Длины сторон прямоугольного треугольника - три последовательных члена вырастающей

Длины сторон прямоугольного треугольника - три поочередных члена вырастающей арифметической прогрессии. Найдите разность этой прогрессии, если периметр треугольника равен 120.

Задать свой вопрос
1 ответ
Пусть а- наименьший катет треугольника, d-разность арифметической прогрессии.Тогда 2-ой катет будет равен а+d, a гипотенуза одинакова a+2d.  Тогда периметр треугольника будет равен:
 а+а+d+а+2d=120
3a+3d=120    //уростим, разделив все равенство на 3
а+d=40
a=40-d
Т.к. треугольник прямоугольный, а катеты и гипотенуза равны а;а+d и a+2d соответственно, то по т.Пифагора:
(а+2d)^2=a^2+(a+d)^2
a^2+4ad+4d^2=a^2+a^2+2ad+d^2
-a^2+2ad+3*d^2=0
a^2-2ad-3d^2=0
Подставим в это ур-е равенство: a=40-d
(40-d)^2-2d(40-d) - 3d^2=0
1600-80d+d^2-80d+2d^2- 3d^2=0
-160d=-1600
d=10
Ответ: разность данной арифметической прогрессии равна 10




, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт