При каких значениях a сумма квадратов корней уравнения x^2+2ax+2a^2+4a+3=0 является

При каких значениях a сумма квадратов корней уравнения x^2+2ax+2a^2+4a+3=0 является величайшей? Чему одинакова эта сумма.

Задать свой вопрос
1 ответ
Если речь идет о 2-ух корнях, то дискриминант обязан быть gt;=0.
D= (2a)^2-4(2a^2+4a+3)=4a^2-8a^2-16a-12=-4a^2-16a-12 :4
-a^2-4a-3gt;=0
a^2+4a+3lt;=0
a^2+4a+3=0
D=4^2-4*1*3=4
a1=(-4-2)/2=-3
a2=(-4+2)/2=-1
-3lt;=alt;=-1
Воспользуемся теоремой Виетта:
x1+x2=-b/a=-2a
x1*x2=c/a=2a^2+4a+3
x1^2+x2^2=(x1+x2)^2-2x1x2=(-2a)^2-2(2a^2+4a+3)=4a^2-4a^2-8a-6=
=-8a-6.
Наибольшее значение это выражение примет при меньшем значении "a", т.е. при а=-3.
Проверим:
1)a=-3
-8*(-3)-6=18
2)a=-2
-8*(-2)-6=10
3)a=-1
(-8)*(-1)-6=2
Ответ: 18
, оставишь ответ?
Имя:*
E-Mail:


Последние вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт