Солнышки, откликнитесь. ОЧЕНЬ Необходимо. ВЫ ПРОСТО СПАСЁТЕ МЕНЯ. способом интегрирования по

Солнышки, отзовитесь. ОЧЕНЬ НУЖНО. ВЫ ПРОСТО СПАСЁТЕ МЕНЯ. способом интегрирования по частям

Задать свой вопрос
1 ответ
34) Интегрируем по частям:

 \int \ln(x) \, dx  = x\cdot \ln(x) - \int xd(\ln(x)) = x\cdot \ln(x) - \int x\cdot \fracdxx =

= x\cdot \ln(x)- x + C

35) Тоже по долям, только два раз:

\int x^2 \sin(2x) dx = - \frac12\int x^2 d(\cos(2x)) =

= - \frac12(\ x^2 \cos(2x) - \int \cos(2x)d(x^2)\ ) =

= - \frac12(\ x^2 \cos(2x) - \int 2x\cdot \cos(2x)dx\ ) =

= - \frac12(\ x^2 \cos(2x) - \frac12 \int 2x\ d(\sin(2x))\ ) =

= - \frac12(\ x^2 \cos(2x) - x\cdot \sin(2x) + \int \sin(2x)dx\ ) =

= - \frac12(\ x^2 \cos(2x) - x\cdot \sin(2x) - \frac12\cos(2x) + C\ )
Nikolaj Furashev
спасибо огромное!!! ты красота
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт