как решить: отыскать все значения а, при каждом из которых оба

Как решить: отыскать все значения а, при каждом из которых оба корня уравнения 2x^2-(6-a)x+3a-a^2=0 принадлежат интервалу (0;2]. СПАСИБО.

Задать свой вопрос
1 ответ
2х-(6-a)x+3a-a=0     x(0; 2]     х(0; 2]
D=(6-a)-4*2*(3a-a)=36-12a+a-24a+8a=9a-36a+36=(3a-6)
x=(6-a-(3a-6))/4=(-4a+12)/4=-a+3=3-a
x=(6-a+3a-6)/4=2a/4=0.5a

0lt;3-a2    3-agt;0      -agt;-3    alt;3
0lt;0.5a2  3-a2      -a-1     a1
                0.5agt;0     agt;0      agt;0
                0.5a2     a4       a4
1alt;3
a=1
a=2
Ответ: а=1
           а=2
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт