решите по алгебре уравнения,нужно найти корни,все не считая а
Решите по алгебре уравнения,необходимо отыскать корешки,все кроме а
Задать свой вопрос1 ответ
Семён Силюк
Сумма и произведение корней находим по аксиоме Виета:
x1 + x2 = 6/4 = 3/2 = p
x1 x2 = -1/4 = q
б) сумма корней нового уравнения равна
1/x1^2 + 1/x2^2 = (x1^2 + x2^2 + 2 x1 x2 - 2 x1 x2)/(x1 x2)^2 = ((x1 + x2)^2 - 2 x1 x2)/(x1 x2)^2 = (p^2 - 2q)/q^2 = 44
творенье корней
1/x1^2 * 1/x2^2 = 1/(x1 x2)^2 = 1/q^2 = 16
По теореме, оборотной аксиоме Виета, уравнение с такими корнями имеет вид x^2 - 44x + 16 = 0.
в) корешки: x1 / x2 + 1 = (x1 + x2)/x2 = p/x2 и p/x1
сумма: p/x1 + p/x2 = p(x1 + x2)/(x1 x2) = p^2/q = -9
творенье: p/x1 * p/x2 = p^2/(x1 x2) = p^2/q = -9
уравнение: x^2 + 9x - 9 = 0
г) сумма: 2/x1^3 - 1 + 2/x2^3 - 1 = 2 * (x1^3 + x2^3) / (x1 x2)^3 - 2 = 2 * (x1 + x2)(x1^2 + 2 x1 x2 + x2^2 - 3 x1 x2)/(x1 x2)^3 - 2 = 2 p (p^2 - 3q) / q^3 - 2 = -578
произведение: (2/x1^3 - 1)(2/x2^3 - 1) = 4 / (x1 x2)^3 - (2/x1^3 + 2/x2^3) + 1 = 4/q^3 - 2p(p^2 - 3q)/q^3 + 1 = 321
уравнение: x^2 + 578x + 321 = 0
x1 + x2 = 6/4 = 3/2 = p
x1 x2 = -1/4 = q
б) сумма корней нового уравнения равна
1/x1^2 + 1/x2^2 = (x1^2 + x2^2 + 2 x1 x2 - 2 x1 x2)/(x1 x2)^2 = ((x1 + x2)^2 - 2 x1 x2)/(x1 x2)^2 = (p^2 - 2q)/q^2 = 44
творенье корней
1/x1^2 * 1/x2^2 = 1/(x1 x2)^2 = 1/q^2 = 16
По теореме, оборотной аксиоме Виета, уравнение с такими корнями имеет вид x^2 - 44x + 16 = 0.
в) корешки: x1 / x2 + 1 = (x1 + x2)/x2 = p/x2 и p/x1
сумма: p/x1 + p/x2 = p(x1 + x2)/(x1 x2) = p^2/q = -9
творенье: p/x1 * p/x2 = p^2/(x1 x2) = p^2/q = -9
уравнение: x^2 + 9x - 9 = 0
г) сумма: 2/x1^3 - 1 + 2/x2^3 - 1 = 2 * (x1^3 + x2^3) / (x1 x2)^3 - 2 = 2 * (x1 + x2)(x1^2 + 2 x1 x2 + x2^2 - 3 x1 x2)/(x1 x2)^3 - 2 = 2 p (p^2 - 3q) / q^3 - 2 = -578
произведение: (2/x1^3 - 1)(2/x2^3 - 1) = 4 / (x1 x2)^3 - (2/x1^3 + 2/x2^3) + 1 = 4/q^3 - 2p(p^2 - 3q)/q^3 + 1 = 321
уравнение: x^2 + 578x + 321 = 0
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
выпиши в свою тетрадь те правила этикета которые тебе не были
Разные вопросы.
Анна хорошо учится у неё много подруг свободное от учёбы время
Обществознание.
Облако тегов