Лена возвела натуральное число N в квадрат и сложила количество цифр

Елена построила натуральное число N в квадрат и сложила количество цифр в числе N с количеством цифр в числе N^2. какой итог у нее не мог получиться

Задать свой вопрос
1 ответ



Осмотрим поначалу числа со старшим разрядом единиц
(в обратном порядке):

 9^2 = 81 \ ;        сумма количества цифр: 1 + 2 = 3 , количество цифр у квадрата числа в два раза больше количества цифр начального числа.

 4^2 = 16 \ ;        разыскиваемая сумма: 1 + 2 = 3 , количество цифр у квадрата числа всё так же в два раза больше количества цифр начального.

 3^2 = 9 \ ;        разыскиваемая сумма: 1 + 1 = 2 , количество цифр у квадрата одинаково количеству цифр начального.

 0^2 = 0 \ ;        разыскиваемая сумма: 1 + 1 = 2 , количество у квадрата равно количеству цифр исходного.


Сейчас перебегаем к старшему уровню 10-ов
(в оборотном порядке):

 99^2 lt; 10 \ 000 \ ;        сумма: 2 + 4 = 6 , количество цифр у квадрата в два раза больше количества цифр начального.

 40^2 = 1600 \ ;        сумма: 2 + 4 = 6 , цифр у квадрата всё так же в два раза больше количества цифр начального.

 30^2 = 900 \ ;        сумма: 2 + 3 = 5 , цифр у квадрата числа: 3 = 41 .

 10^2 = 100 \ ;        сумма: 2 + 3 = 5 , цифр у квадрата: 3 = 41 .


Дальше перебегаем к старшему разряду сотен
(в оборотном порядке):

 999^2 lt; 1 \ 000 \ 000 \ ;        сумма: 3 + 6 = 9 , цифр у квадрата в два раза больше.

 400^2 = 160 \ 000 \ ;        сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.

 300^2 = 90 \ 000 \ ;        сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*21 .

 100^2 = 10 \ 000 \ ;        сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*21 .


Ну и ещё перебегаем к старшему уровню тыщ
(в оборотном порядке):

 9 \ 999^2 lt; 100 \ 000 \ 000 \ ;        сумма: 4 + 8 = 12 , у квадрата в два раза больше.

 4000^2 = 16 \ 000 000 \ ;        сумма: 4 + 8 = 12 , у квадрата вдвое больше.

 3000^2 = 9 \ 000 000 \ ;        сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*21 .

 1000^2 = 1 \ 000 000 \ ;        сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*21 .



А сейчас всё обобщим на самый общий случай.

Если бы число записывалось единицей с R нолями, то его квадрат содержал бы теснее 2R нолей, при этом в начальном числе было бы (R+1) цифр, а в квадрате числа (2R+1) цифр.

Пусть у нас старший разряд таков, что во всём числе только R цифр, рассмотрим всё, как обычно в оборотном порядке:

(  99999 : : : R цифр : : : 99999  )      это число на единицу меньше, чем число     (  100000 : : : R нулей : : : 00000  )     , в котором (R+1) цифр.

квадрат числа [(  99999 : : : R цифр : : : 99999  )]       это число, наименьшее, чем число     (  100000 : : : 2R нулей : : : 00000  )     , в котором (2R+1) цифр.

Означает, квадрат числа (  99999 : : : R цифр : : : 99999  ) содержит ровно 2R цифр, а всего само число и его квадрат содержат 3R цифр.


в числе (  400000 : : : (R1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  400000 : : : (R1) нулей : : : 00000  )]  =
=  (  1600000 : : : (2R2) нулей : : : 00000  )  содержит 2R цифр, а всего само число и его квадрат содержат 3R цифр.


в числе (  300000 : : : (R1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  300000 : : : (R1) нулей : : : 00000  )]  =
=  (  900000 : : : (2R2) нулей : : : 00000  )  содержит (2R1) цифр, а всего само число и его квадрат содержат (3R1) цифр.


в числе (  100000 : : : (R1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  100000 : : : (R1) нулей : : : 00000  )]  =
=  (  100000 : : : (2R2) нулей : : : 00000  )  содержит (2R1) цифр, а всего само число и его квадрат содержат (3R1) цифр.




И так будет для хоть какого R

R = 1   : : :  сумма: 3R = 3 либо (3R1) = 2 .
R = 2   : : :  сумма: 3R = 6 либо (3R1) = 5 .
R = 3   : : :  сумма: 3R = 9 либо (3R1) = 8 .
R = 4   : : :  сумма: 3R = 12 либо (3R1) = 11 .
R = 5   : : :  сумма: 3R = 15 или (3R1) = 14 .

  . . .

R = 32   : : :  сумма: 3R = 96 либо (3R1) = 95 .
R = 33   : : :  сумма: 3R = 99 либо (3R1) = 98 .
R = 34   : : :  сумма: 3R = 102 либо (3R1) = 101 .
R = 35   : : :  сумма: 3R = 105 либо (3R1) = 104 .

... и т.д и т.п. ...


Как легко созидать, в этой последовательности:

2, 3,  5, 6,  8, 9,  11, 12,  14, 15 .... 95, 96,  98, 99,  101, 102,  104, 105 ....

пропущены определённые числа. Пропущенные числа:

1, 4, 7, 10, 13, 16 .... 94, 97, 100, 103, 106 ....

покоряются закону (3R+1).


В самом деле, меж предыдущим и следующим значениями, кратными трём, всегда содержатся два целые числа, а разыскиваемой суммой, кроме 3R, может быть только одно из них: (3R1) .


Поэтому, значения, покоряющиеся закону (3R+1) не могут быть искомым результатом. Так, к примеру, число 99 кратно трём ( 99 = 3*33 ), а значит, число   100 = 3*33+1   никак не могло бы оказаться в расчётах Елены.


О т в е т : у Елены не могли получиться результаты, покоряющиеся закону (3R+1) , где R какое угодно целое число.

ну и, окончательно, все результаты Елены могут быть только положительными, поскольку это количества, т.е. естественные величины.

в частности, у неё не могло получиться число 100.


, оставишь ответ?
Имя:*
E-Mail:


Последние вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт