Помогите 4 номер пожалуйста!!

Помогите 4 номер пожалуйста!!

Задать свой вопрос
2 ответа
Решение во вложении.....
Семик
Спасибо огромное!!!!
Хлюкина Наташа
поглядела Вашу страничку, столько методов решения!!! на выбор, хоть какое можно брать
Данил Чурзин
Да, я теснее разочаровалась, что не посодействуют. А тут все и сходу

\frac15^4+x-27^x\cdot 25^2x-1\sqrt6-x\le 0; знаменатель больше нуля и потому может быть отброшен после выписывания ОДЗ: xlt;6. Получаем неравенство 15^4+x-27^x\cdot 25^2x-1\le 0;\ 3^4+x\cdot 5^4+x-3^3x\cdot \frac5^4x5^2\le 0. Разделяем неравенство на положительные 3^x; 5^x и умножаем на также положительное 5^2. Получаем 3^4\cdot 5^6\le 3^2x\cdot 5^3x;\ (3^2\cdot 5^3)^2\le (3^2\cdot 5^3)^x;\ x\ge 2. Заключительный переход получен благодаря возрастанию показательной функции с основанием, великим 1. Пересекая с ОДЗ, получаем

Ответ: [2;6)

Арсений Самров
Спасибо громадное!!!!!
Daniil Nesljubin
Вы видите, что можно полностью обойтись без логарифмирования, на странице у кого-то лицезрела. Мыслю моё решение тоже разобрали. Разделяем на 15 в степ х и умнож. на 25 и сходу выходим на схожую базу слева и справа. 27 и 25 нас "подталкивают" работать с числом 15, не раскладывая на множители.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт