решите уравнение 11 класс
Решите уравнение 11 класс
Задать свой вопросБудем подставлять заместо x целые неотрицательные числа. При x = 0, 2x + 1 = 1, при x = 1, 2x + 1 = 3, при x = 2, 2x + 1 = 5 т. е. ряд в числителе дроби образует арифметическую прогрессию c разностью d = 2, где 1-ый член a = 1, 2-ой a = a + d = 3 и т. д. Осмотрим ряд в знаменателе дроби. Представим его в виде 1/2 + 1/6 + ... + 1/342 = 1/1*2 + 1/2*3 + ... + 1/18*19. Найдем сумму этого ряда. Т. к. для естественных n имеет место равенство 1/n*(n+1) = 1/n - 1/(n+1), то применим это равенство поочередно для всех n от 1 до 18. Получим 1/2 + 1/6 + ... + 1/342 = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... + (1/18 - 1/19) = 1 - 1/19 = 18/19. Таким образом 1 + 3 + ... + (2x + 1) = 342*18/19 = 18*19*18/19 = 18. Сумму арифметической прогрессии в числителе обретаем по формуле ((a + a)/2)((a - a)/(a - a) + 1). У нас a = 1, a = 3 и a = 2x+1. Тогда сумма 1 + 3 + ... + (2x + 1) = ((1 + 2x + 1)/2)((2x + 1 - 1)/(3 - 1) + 1) = (2(x + 1)/2)(2x/2 + 1) = (x + 1)(x + 1) = (x + 1). Конечно имеем (x + 1) = 18 =gt; x + 1 = 18 =gt; x = 17.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.