Избавиться от иррациональности в знаменателе дроби4/(корень кубический из 7 - корень

Избавиться от иррациональности в знаменателе дроби
4/(корень кубический из 7 - корень кубический из 3)

Задать свой вопрос
2 ответа

\dfrac4\sqrt[3]7-\sqrt[3]3=\dfrac4(\sqrt[3]7^2+\sqrt[3]7\cdot3+\sqrt[3]3^2)(\sqrt[3]7-\sqrt[3]3)(\sqrt[3]7^2+\sqrt[3]7\cdot3+\sqrt[3]3^2)=\\\\=\dfrac4(\sqrt[3]49+\sqrt[3]21+\sqrt[3]9)(\sqrt[3]7)^3-(\sqrt[3]3)^3=\dfrac4(\sqrt[3]49+\sqrt[3]21+\sqrt[3]9)7-3=\\\\=\dfrac4(\sqrt[3]49+\sqrt[3]21+\sqrt[3]9)4=\sqrt[3]49+\sqrt[3]21+\sqrt[3]9

Борис Фуруев
спасибо огромное за все!!
Каплан Вадим
как ставят максимально баллов Артем теснее тут
Семён Мульдияров
это я просил его посодействовать, и баллов это не максимально
Лидия Максимочкина
я разумею новичок.... я тож такой был... промолчу ...

чтоб в знаменателе получить разность кубов,умножим числитель и знаменатель на неполный квадрат суммы знаменателя:

, оставишь ответ?
Имя:*
E-Mail:


Последние вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт