10 класс, тригонометрические тождества, уравнения и равенства. 3 задания. Помогите!

10 класс, тригонометрические тождества, уравнения и равенства. 3 задания. Помогите!

Задать свой вопрос
Vera
Я готов даже платить за помощь в решении. Напишите свои контакты (или ссылку киньте), и я напишу для вас.
1 ответ

4) левая часть

(1-sin^2x/cos^2x):(1+sin^2x/cos^2x)=(cos^2x-sin^2x)/(cos^2x+sin^2x)=

=(cos^2x-sin^2x)/1=cos2x

правая часть

cos^4x-sin^4x=(cos^2x-sin^2x)(cos^2x+sin^2x)=(cos^2x-sin^2x)*1=cos2x

сos2x=cos2x

5) приведу все к основанию 2

2^(1-2sin^2x)=2^(2sinx-2cosx)

основания схожи-приравняю характеристики ступеней

1-2sin^2x=2(sinx-cosx)

cos^2x-sin^2x=2(sinx-cosx)

(cosx-sinx)(cosx+sinx)=2(sinx-cosx)

(cosx-sinx)(cosx+sinx+2)=0

a) cosx-sinx=0; cosx=sinx; x=pi/4+pik

b)cosx+sinx+2=0-не имеет корней

ответ x=pi/4+pikж к-целое

Из обозначенного промежутка x=[3pi/3;3pi] либо x=[pi;3pi] будут корешки

x=5pi/4 и 9pi/4


6)sin120=sin(90+30)=sin90*cos30+cos90*sin30=cos30=3/2

cos120=cos(90+30)=cos90*cos30-sin90*sin30=-sin30=-1/2

tg(90+30)=-ctg30=-3

ctg120=ctg(90+30)=-tg30=-1/3

формулы приведения использовались...


Екатерина Дуняк
В одну сторону не может доказать?(
Ира Четокина
cos2x * 1 = (cos^2x - sin^2x)(cos^2x+sin^2x) = cos^4x - sin^4x
Людмила Лакнер
мое решение-как желаю так и пишу...
Любовь
Да, вариантов-то множество.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт