Запишите уравнение параболы, проходящей через точки А(-4;0) и В(2;36), если точка

Запишите уравнение параболы, проходящей через точки А(-4;0) и В(2;36), если точка А является вершиной параболы.

Задать свой вопрос
1 ответ

Запишем уравнение параболы в виде y=a*x+b*x+c. Подставляя в это уравнение координаты точек A и B, получаем систему уравнений:

16*a-4*b+c=0

4*a+2*b+c=36

Кроме того, так как абсцисса верхушки параболы Xa удовлетворяет уравнению Xa=-b/(2*a), то к этим двум уравнениям добавляется третье: -4=-b/(2*a), или b=8*a. Подставляя это выражение в два первых уравнения, приходим к системе:

-16*a+c=0

20*a+c=36

Решая её, находим a=1 и c=16. Тогда b=8 и уравнение параболы принимает вид: x+8*x+16=0. Ответ: x+8*x+16=0.  

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт