Отыскать площадь фигуры ограниченной чертами y=8x-x^2-7, y=0

Отыскать площадь фигуры ограниченной чертами y=8x-x^2-7, y=0

Задать свой вопрос
1 ответ

Ответ:

36

Объяснение:

y=-x^2+8x-7,  - парабола ветви направлены вниз

решив кв. ур-ние по Виету найдем корни х=1 и х=7

в этих точках парабола пересекает ось у, означает площадь одинакова

(-x^2+8x-7)dx = -x^3/3+8x^2/2-7x+C = -x^3/3+4x^2-7x+C

т.к. заданы ограничения, то это м.б. опред интеграл от 1 до 7

по ф-ле Ньютона-Лейбница, подсавляем корни 1 и 7

-(7^3/3- 1^3/3)+4(7^2-1^2)-7(7-1) = - (343/3-1/3) +4 (49-1) - 7*6 = -114+192-42 = 36

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт