Решить уравнение с модулем :2x-1-5+x=6-x

Решить уравнение с модулем :

2x-1-5+x=6-x

Задать свой вопрос
1 ответ

2x-1-5+x=6-x\\y=2x-1-5+x-6-x

Это функция представляет из себя ломанную, нам надо отыскать нули этой функции. На числовой прямой отметим точки в которых доводы модулей одинаковы нулю. Таким образом мы сможем узнать как на интервалах раскрываются модули и выглядит функция, сверху напишу модули, чтоб было понятно, желая можно сходу писать окончательную функцию для промежутка. см. вниз.

Да и 2x-1-5 я представил как 2x-6 и -2x-4, при этом первый существует когда xgt;0.5, а иной когда xlt;0.5 т.к. 2x-1=0 =gt;x=0.5

y_1=-2x-4+x-(6-x)=-10\\y_2=2x+4+x-(6-x)=4x-2\\y_3=-2x+6+x-(6-x)=0\\y_4=2x-6+x-(6-x)=4x-12\\y_5=2x-6+x+6-x=2x

Ординаты точек в которых происходит смена знака у модуля.

y(-2)=5-5-2-8=-10\\y(0.5)=0-5+0.5-5.5=0\\y(3)=5-5+3-3=0\\y(6)=11-5+6-0=12

Можно выстроить график ломанной, а можно сходу по условию определить где функция будет одинакова 0.

Главное держать в голове, что функция y_n существует на каком-то интервалу, а не при всех х.

Ответ: x[0.5;3].

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт