50 баллов! Безотлагательно! Решить уравнение! с подробным решением![tex] sqrtx + x^3
50 баллов! Безотлагательно! Решить уравнение! с доскональным решением!
Ответ: x=1
Разъяснение:
ОДЗ: xgt;=0
Подмена:x=tgt;=0 (тк квадратный корень не отрицателен)
t+t^6=3-t^2
t^6+t^2+t-3=0
(t^6-1) +(t^2-1) +(t-1)=0
t^6-1= (t^2)^3 -1^3 = (t^2-1)* (t^4+t^2+1)= (t-1)* (t+1)*(t^4+t^2+1)=
(t-1)*(t^5+t^4+t^3+t^2+t+1) (то же самое можно получить по общей формуле разности ступеней ,если для вас она знаменита : a^n-b^n)
(t-1)* (t^5+t^4+t^3+t^2+t+1) +(t-1)*(t+1) +(t-1)=0
(t-1)* (t^5+t^4+t^3+t^2+2t+3)=0
Как было оговорено ранее: x=tgt;=0
Тогда все одночлены в многочлене:
t^5+t^4+t^3+t^2+2t+3
неотрицательны, а свободный член 3 cтрого положителен.
Сумма неотрицательных членов и положительного члена положительна:
t^5+t^4+t^3+t^2+2t+3 gt;0
Вывод: t^5+t^4+t^3+t^2+2t+3=0 (не имеет решений)
Таким образом уравнение:
(t-1)* (t^5+t^4+t^3+t^2+2t+3)=0
имеет единственное решение : t=1
x=1
x=1
Ответ: x=1
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.