ПОМОГИТЕ ПОЖАЛУЙСТА ОЧЕНЬ Безотлагательно С ПЕРВООБРАЗНЫМИ!!!!ОТДАЮ МНОГО БАЛЛОВ!!!Для функции

ПОМОГИТЕ ПОЖАЛУЙСТА ОЧЕНЬ Безотлагательно С ПЕРВООБРАЗНЫМИ!!!!
ОТДАЮ МНОГО БАЛЛОВ!!!

Для функции y=g(x) найдите ту первообразную, график которой проходит через заданную точку M:

1. g(x)=2cos^2(x/2)-1, M (pi/2; 16)
2. g(x)=cos^2(x/2)-sin^2(x/2), M (0;7)
3. g(x)=1-2sin^2(x/2), M (pi/2; 15)

Пожалуйста, помогите доскональным решением, нам произнесли, что нужно решать как-то через подставление тригонометрических формул, но сам принцип вообщем толком не растолковали...

Задать свой вопрос
1 ответ
1)g(x)=2cos^2(x/2)-1, M (pi/2; 16)
Используем формулу снижения ступени:
cos^2(x)=(1+cos(2x))/2
g(x)=2cos^2(x/2)-1=(2*(1+cos(2x/2))/2)-1=1+cosx-1=cosx
Первообразная cosx=sinx+C
G(x)=sinx+C
Подставляем координаты точки М(pi/2;16)
16=sin(pi/2)+C
C=15
G(x)=sinx+15 - разыскиваемая первообразная

2)g(x)=cos^2(x/2)-sin^2(x/2), M (0;7)
Подобно через ф. понижения степени:
g(x)=((1+сosx)/2)-((1-cosx)/2)=(2cosx)/2=cosx
G(x)=sinx+C
7=sin(0)+C
C=7
G(x)=sinx+7 - искомая первообразная

3)g(x)=1-2sin^2(x/2), M (pi/2; 15)
g(x)=1-2*(1-cosx)/2=1-1+cosx=cosx
G(x)=sinx+C
15=sin(pi/2)+C
15=1+C
C=14
G(x)=sinx+14 - разыскиваемая первообразная

p.s.: обычная формула понижения степени и ничего более

Оленька Сузикова
Спасибо громадное!!!
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт