Найдите производную функции y=sin3x/3x, запишите правила и формулы, которые вы применяли

Найдите производную функции y=sin3x/3x, запишите верховодила и формулы, которые вы применяли при вычислении.

Задать свой вопрос
1 ответ
Раздельно вычислим для обеих функций производные.
Производная сложной функции: (g(f(x))'=g'(f(x)*f'(x): (sin 3x)'=(sin3x)'*(3x)'=3 cos3x.
Производная знаменателя - (3х)'=3.
Функция представлена в виде частного, производная таких функций вычисляется по формуле: y'= (u/g)'= (u'g - g'u)/u^2.
Следовательно, y'= (3 cos3x*3x - 3sin3x)/9x^2=(9x* cos3x - 3sin3x)/9x^2.
Надеюсь на отсутствие опечаток.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт