[tex]f(x) = (x-3)e^x+1[/tex] отыскать экстремумы функции на интервале (-2; 4), а

f(x) = (x-3)e^x+1 найти экстремумы функции на промежутке (-2; 4), а также наивеличайшее и наименьшее значения на отрезке [-2; 4]. Задание повышенной трудности, 11 класс.

Задать свой вопрос
Василиса Кулацкая
надобно наверняка начинать с модуля, рассмотреть два случая , когда х+1>0 b x+1<0,а далее как обычно
Кристина Самара
Я так и сделал, но это еще не все :)
1 ответ
F(x)=(x-3)*e^(x+1)
1)xlt;-1
f(x)=(x-3)*e^(-x-1)
f(x)=e^(-x-1)-e^(x-1)*(x-3)=e^(-x-1)*(1-x+3)=(4-x)*e^(-x-1)=0
e^(-x-1)gt;0 при любом х4-x=0x=4
x(-;-1)экстремумов на данном интервале нет
------------------
2)x-1
f(x)=(x-3)*e^(x+1)
f(x)=e^(x+1)+e^(x+1)*(x-3)=e^(x+1)(1+x-3)=(x-2)*e^(x+1)=0
e^(x+1)gt;0x-2=0x=2
              _                        +
[-1]-------------------(2)--------------------------()
                          min
--------------------------
наибольшее и меньшее значения на отрезке [-2; 4]
f(-2)=-5*e=-5e меньшее
f(4)=1*e^5=e^5 наибольшее
, оставишь ответ?
Имя:*
E-Mail:


Последние вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт