помогите решить тесты, МОЛЮ

Помогите решить испытания, МОЛЮ

Задать свой вопрос
1 ответ
А7.
tg(pi/2 - a) = sin(pi/2 - a) / cos(pi/2 - a)

sin(a - (3*pi / 2)) * sin(pi/2 - a) / cos(pi/2 - a)  * cos(pi/2 - a) 
= sin(a - (3*pi / 2)) * sin(pi/2 - a)

sin(pi/2 - a) = -sin(a - pi/2) = -(-cos(a)) = cos(a) 

sin(a - (3*pi / 2)) = cos(a)

sin(a - (3*pi / 2)) * sin(pi/2 - a) = cos(a) *cos(a) = cos^2 (a)

sin(a + pi) = -sin(a)
sin^2 (a + pi) = (-sin(a)) *(-sin(a)) = sin^2 (a)

cos^2 (a) + sin^2 (a) = 1

ответ 3)

А8.

3 = log2 (8)
Поскольку основание логарифма 2 gt; 1, то неравенство эквивалентно последующему неравенству
(x + 5) lt;= 8
x lt;= 8 - 5
x lt;= 3
x (-oo; 3]

Найдем область возможных значений логарифма
На аргумент логарифма накладывается такое условие
х+5 gt; 0
x gt; -5
x (-5; +oo) - область возможных значений логарифма

Решение - скрещение полученных областей
x (-5;3]

Ответ 2)

А9. 
sin^2 (x) = 1 - cos^2 (x)

2 - 2cos^2 (x) - 5cos(x) + 1 = 0
- 2cos^2 (x) - 5cos(x) + 3 = 0
2cos^2 (x) + 5cos(x) - 3 = 0
Подмена cos(x) = t
2 t^2  + 5t - 3 = 0
Найдем дискриминант
D = 5^2 - 4*2*(-3) = 25 + 24 = 49
Корень из дискриминанта
sqrt(D) = 7
1-ое неведомое
t = (-5 + 7) / (2*2) = 2/4 = 1/2
2-ое безызвестное
t = (-5 - 7) / (2*2) = -12/4 = -3

cos(x) воспринимает значение в границах [-1;1]
поэтому 2-ое неизвестное отбрасываем

имеем
cos(x) = 1/2
косинус принимает то
x = +-pi/3 + 2*pi*m, mZ

ответ 1)
(поближе всего)
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт