При каких целых значениях n выражение (n^3+5n^2+8n+17)/(n^2+2n+2) является целым числом?
При каких целых значениях n выражение (n^3+5n^2+8n+17)/(n^2+2n+2) является целым числом?
Задать свой вопросУмножим знаменатель дроби на 5: 5*(n^2+2n+2)=5n^2+10n+10. Преобразуем числитель дроби: n^3+5n^2+8n+17 = n^3+5n^2+10n-2n+10+7 = 5n^2+10n+10+n^3-2n+7 = 5*(n^2+2n+2)+n^3-2n+7. Отсюда видно, что для того чтоб начальная дробь была целым числом обязано выполняться условие n^3-2n+7 = k*(n^2+2n+2), где k - целое. Но, это невероятно ни при каких n. При n=0 получаем 7/2 - дробное число. Заметим, что n^3-2n+7 и n^2+2n+2 имеют различную четность, потому если n = 2k, где k - целое, n^3-2n+7 = 8k^3-4k+7 является нечетным числом, тогда как n^2+2n+2 = 4k^2+4k+2 число четное. Наоборот, если n = 2k+1, где k - целое, n^3-2n+7 = (2k+1)^3-2(2k+1)+7=8k^3+12k^2+6k+1-4k-2+7 = 8k^3+12k^2+2k+6 четное число, а n^2+2n+2 = (2k+1)^2+2(2k+1)+2 = 4k^2+4k+1+4k+2+2=4k^2+8k+5 число нечетное. А такие числа не могут делиться друг на друга нацело. Т. о. n^3-2n+7 не делится нацело на n^2+2n+2 ни при каких целых n.
Ответ: Ни при каких целых n.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.