y = ln(17x) - 17x + 17 отыскать величайшее значение функции.

Y = ln(17x) - 17x + 17 найти наибольшее значение функции. Пожалуйста

Задать свой вопрос
Аделина Синха
y=1/x-17
Любовь Темиряева
экстремум при х=1/17
Катя
y(1/17)=0-1+17=16
1 ответ
Y(x) = ln(17x) - 17x + 17 = (17 + ln 17) + ln x - 17x
y'(x) = 0 + 1/x - 17

Обретаем нули производной: 
1/x - 17 = 0
1/x = 17
x = 1/17

В точке x = 1/17 производная меняет символ с плюса на минус, означает, это точка максимума; других экстремумов нет, поэтому там достигается безусловный максимум.

Наивеличайшее значение y(1/17) = ln(17 * 1/17) - 17/17 + 17 = 0 - 1 + 17 = 16
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт