X^4 +(a^2-a+1)*x^2-a^3-a=0.Обусловьте значение параметра а, при которых:1) уравнение имеет

X^4 +(a^2-a+1)*x^2-a^3-a=0.
Обусловьте значение параметра а, при которых:
1) уравнение имеет единственный корень;
2) имеет два разных корня;
3) не имеет корней.
x^2=t, t=gt;0

Задать свой вопрос
1 ответ

Итак, ситуация номер 1 - имеется единственное решение:

Если x^2\neq 0, то имеется или 2 и более корней, или их вообщем нет.

Мы знаем, что x=0, тогда

-a^3-a=0\\a(a^2+1)=0\\a=0

Решения для a^2+1=0 просто откидываем, всеохватывающие числа нам неинтересны.

Первая ситуация разобрана, но проверку стоит провести:

x^2=t\\t^2+t=0\\t=0

Второе решение t=-1 не подходит, т.к. -1lt;0

t=0 \Rightarrow x^2=0 \Rightarrow x=0

Проверка выполнена, имеется единственное решение при a=0

2-ая ситуация:

Нужно 2 корня, значит значение t будет единственным!

t^2+(a^2-a+1)t-a^3-a=0\\D=0 \\\therefore (a^2-a+1)^2-4(-a^3-a)=0\\a^4+a^2+1-2a^3+2a^2-2a+4a^3+4a=0\\a^4+2a^3+3a^2+2a+1=0

Данное уравнение не имеет решений, и при любом значении a Dgt;0 (D по t).

Т.е. мы не имеем решений для 2-ой ситуации.

Третья ситуация:

Т.к. Dgt;0, то и в третьей ситуации удовлетворяющих значений a просто нет.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт