Помогите решить6arctg(sqr(3))-4sin((sqr(2)/2)2arccos0+6arcsin(1/2)

Помогите решить

6arctg(sqr(3))-4sin((sqr(2)/2)

2arccos0+6arcsin(1/2)

Задать свой вопрос
2 ответа
Обязано быть не 4Sin , а 4arcSin
6arctg \sqrt3 -4arcSin \frac \sqrt2 2=[tex]6* \frac \pi 3-4* \frac \pi 4=2 \pi - \pi = \pi \\\\2arcCos0+6arcSin \frac12=2* \frac \pi 2 +6* \frac \pi 6 = \pi + \pi =2 \pi
6arcctg( \sqrt3)-4sin( \frac \sqrt2 2 ) =6* \frac\pi6 -4sin( \frac \sqrt2 2 )=\pi-4sin( \frac \sqrt2 2 )\\2arccos(0)+6arcsin(0,5)=2 \frac\pi2 +6 \frac\pi6 =2\pi
скажу так ,таблица значений синусов косинусов от арков не чем не отличается 
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт