Решить в целых числах уравнение:x = y + 6y + 21

Решить в целых числах уравнение:

x = y + 6y + 21

Задать свой вопрос
1 ответ
Tx^2=y^2+6y+21,
x^2=y^2+6y+9+12,
x^2=(y+3)^2+12,
x^2-(y+3)^2=12, пусть t=y+3
(x+t)(x-t)=12.
Если x  и t целые, то x+t, x-t целые числа, пусть x+t=k,x-t=m, тогда
x=(k+m)/2
t=(k-m)/2, при этом k*m=12
Так как числа x и t целые, то k и m сразу могут быть или четными, либо нечетными. Учитывая, что 1*12=12, 2*6=12,3*4=12, то последнему условия удовлетворяют толки следующие целые числа (k,m): (2,6);(6,2);(-2;-6);(-6,-2). Откуда
x=4, y=t-3=-2-3=-5
x=4, y=t-3=2-3=-1
x=-4, y=t-3=2-3=1
x=-4, y=t-3= -2-3=-5


, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт