Обусловьте угол меж 2-мя касательными, проведенными из точки (0; -2) к

Обусловьте угол между 2-мя касательными, проведенными из точки (0; -2) к параболе f(x) = x2

Задать свой вопрос
1 ответ
Абсциссы точек касания  x_1,x_2  .    
Угловые коэфф. касательных   k_1=y'(x_1),\; k_2=y'(x_2)

Уравнение касательной:  y=y(x_1)+y'(x_1)(x-x_1)

y=x^2,\; \; y(x_1)=x_1^2\\\\y'=2x,y'(x_1)=2x_1\\\\Yravn.kasat.\; \; y=x_1^2+2x_1(x-x_1)

Теперь подставим координаты точки, через которую проходит касательная, (0,-2) , в уравнение касательной заместо переменных:

-2=x_1^2+2x_1(0-x_1)\\\\-2=x_1^2-2x_1^2,\; \; x_1^2=2,\; x_1=\sqrt2,\\\\x_2=-\sqrt2

В принципе мы имеем обе точки касания:  A(\sqrt2,2),\; B(-\sqrt2,2)

Подставим значения абсцисс в уравнение касательной.

a)\; \; y=2+2\sqrt2(x-\sqrt2)\; \to \; y=2+2\sqrt2x-4,\\\\y=2\sqrt2x-2\; \to k_1=2\sqrt2\\\\b)\; \; y=2-2\sqrt2(x+\sqrt2),\to \; y=-2\sqrt2x-2\; \to k_2=-2\sqrt2

Угол меж прямыми можно отыскать по формуле 

tg \alpha =\frack_1-k_21+k_1k_2\\\\tg \alpha =\frac2\sqrt2-(-2\sqrt2)1+2\sqrt2(-2\sqrt2)=\frac4\sqrt21-8=\frac4\sqrt27\\\\ \alpha =arctg\frac4\sqrt27





, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт