Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 17:10,

Одна из биссектрис треугольника делится точкой скрещения биссектрис в отношении 17:10, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, одинакова 30

Задать свой вопрос
1 ответ
Пусть AD - биссектриса, описанная в условии.
BC - сторона, одинаковая 30.
Осмотрим треугольник ADC.
Для этого треугольника CO - биссектриса,
По свойству биссектрисы:
AO/OD=AC/CD=17/10
10*AC=17*CD
Осмотрим треугольник ABD.
Для этого треугольника BO - биссектриса,
По свойству биссектрисы:
AO/OD=AB/BD=17/10
10*AB=17*BD
Складываем приобретенные равенства:
10*AC+10*AB=17*CD+17*BD
10(AC+AB)=17(CD+BD), CD+BD=BC=30
10(AC+AB)=17*30
AC+AB=17*3=51
PABC=AC+AB+BC=51+30=81
Ответ: 81
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт