Укажите соответствие меж обилиями и их мощностями:
nbsp;nbsp;A = , -n,

Укажите соответствие меж обилиями и их мощностями:
nbsp;nbsp;A = , -n, ,-3, -2, -1, 0, 1, 2, 3, , n, lt; счетное
nbsp;nbsp;A = (-s,s) lt; континуум
nbsp;nbsp;А = -1, -2,- 3,- 4, -5,- 6 lt; окончательное
Укажите соответствие меж определением отображения и его формулировкой
nbsp;nbsp;отображение огромного количества А в В lt; управляло, при котором каждому элементу aA неким образом поставлен в соответствие единственный элемент bB
nbsp;nbsp;отображение огромного количества А на В lt; управляло, при котором каждому элементу aA неким образом поставлен в соответствие единственный элемент bB, и при этом каждый элемент огромного количества B подходит какому или элементу множества A
nbsp;nbsp;обоюдно-однозначное отображение множеств lt; управляло, при котором каждому элементу aA неким образом поставлен в соответствие единственный элемент bB, и при этом каждый элемент огромного количества B соответствует единственному элементу огромного количества A
Укажите соответствие между пятым элементом последовательности и формулой, определяющей эту последовательность
nbsp;nbsp;6/5 lt; an = (n2 + 5) / n2
nbsp;nbsp;40/3 lt; an = n!/9
nbsp;nbsp;5 lt; an = (10n 5) / 9
Укажите соответствие меж функцией и ее областью определения
nbsp;nbsp;y=1/(x 3) lt; (-s, -3)(-3, 3)(3, +s)
nbsp;nbsp;y=1/(x 3) lt; (-s, 3)(3, +s)
nbsp;nbsp;y=1/(x + 3) lt; (-s, -3)(-3, +s)
nbsp;nbsp;y=1/(x2+9) lt; (-s, +s)
Укажите соответствие меж функцией и ее качествами
nbsp;nbsp;f(x) = x4 + 5x2 lt; четная функция
nbsp;nbsp;f(x) = x2 + x lt; функция ни четная, ни нечетная
nbsp;nbsp;f(x) = (ex+1)/(ex 1) lt; нечетная функция
Функция y = ax при а gt; 1 имеет область определния
nbsp;(*ответ*) (-s, +s), возрастающая
nbsp;(0, +s), подрастающая
nbsp;имеет область определения (-s, +s), убывающая
nbsp;(0, +s), убывающая
Функция y = ax при а nbsp;1 имеет область определения
nbsp;(*ответ*) (-s, +s), убывающая
nbsp;(-s, +s), вырастающая
nbsp;(0, +s), убывающая
nbsp;(0, +s), вырастающая
Функция y = log2х обладает последующими качествами
nbsp;(*ответ*) четная, имеет нули х1 = -1, х2 = 1
nbsp;нечетная, имеет нуль х = 0
nbsp;четная, имеет нуль в точке х = 0
nbsp;нечетная, имеет нули х1 = -1, х2 = 1
Функция y = logа(х + 1) обращается в 0 в точке:
nbsp;(*ответ*) х = 0
nbsp;х = 1
nbsp;х = -1
nbsp;х = 2
Функция y = logаx при а nbsp;1 обладает следующими качествами: ее область определения
nbsp;(*ответ*) х nbsp;0, она вырастающая, обращается в 0 в т. х=1
nbsp;х nbsp;0, она возрастающая, обращается в 0 в т. х=1
nbsp;х nbsp;0, она убывающая, обращается в 0 в т. х=1
nbsp;(-s,s), она вырастающая, обращается в 0 в т. х=0
Функция y = sinx владеет последующими свойствами
nbsp;(*ответ*) область определения (-s, +s), область значений [-1, 1], нечетная, нули хn=n, (n любое число)
nbsp;область определения [-1, 1], область значений (-s, +s), нечетная, нули хn=n, (n хоть какое число)
nbsp;область определения (-s, +s), область значений (-1, 1), нечетная, нули хn=n, (n любое число)
nbsp;область определения (-s, +s), область значений [-1, 1], четная, нули хn=n, (n любое число)

Задать свой вопрос
1 ответ
Правильные ответы указаны по тесту
тест прошел проверку)
, оставишь ответ?
Имя:*
E-Mail:


Похожие вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт