В равнобедренной трапеции ABCD боковые стороны равны наименьшему основанию BC. К

В равнобедренной трапеции ABCD боковые стороны равны наименьшему
основанию BC. К диагоналям трапеции провели перпендикуляры BH и CE.
Найдите площадь четырехугольника BCEH, если площадь трапеции ABCD равна
36

Задать свой вопрос
1 ответ
Трапеция АВСД, АВ=ВС=СД, треугольники АВС и ВСД равнобедренные, ВН и СЕ - медианы, вышины, биссектрисы, АН=НС, ВЕ=ЕД, МК - средняя линия трапеции=(АД+ВС)/2, МН-средняя линия треугольника АВС=1/2ВС, КЕ- средняя линия треугольника ВСД=1/2ВС, НЕ=МК-МН-ЕК=(АД+ВС)/2 -1/2ВС-1/2ВС=(АД-ВС)/2, средняя линия разделяет вышину ОР (проведена через пересечение диагоналей ) на одинаковые доли ОТ=ТР (точка Т скрещение НЕ и ОР), площадь трапеции АВСД=(АД+ВС)*ОР/2=36, ОР=72/(АД+ВС), ОТ=1/2ОР=72/2*(АД+ВС)=36/(АД+ВС), площадь трапецииВНЕС=(НЕ+ВС)*ОТ/2=((АД-ВС)/2 + ВС)/2*(36/(АД+ВС)=((АД-ВС+2ВС)/4)*(36/(АД+ВС)=(АД+ВС)/4 *(36/(АД+ВС))=36/4=9
Дмитрий
а можно набросок к решению!
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт