В прямоугольном треугольнике длины медиан,проведённых из вершин острых углов, одинаковы 156 и

В прямоугольном треугольнике длины медиан,проведённых из вершин острых углов, одинаковы 156 и 89. Отыскать длину гипотенузы

Задать свой вопрос
1 ответ
Треугольник АВС , угол АСВ=90
АМ=sqrt(156) -медиана, СМ=МВ=х
ВК =sqrt(89)- медиана, АК=КС=у
Из треугольника АСМ: 4y^2+x^2=156
Из треуг.ВСК:4x^2+y^2=89
Это система
 \left \ y^2=89-4x^2 \atop 4x^2+y^2=156 \right.\\\\4(89-4x^2)+x^2=156\\\\356-15x^2=156\\\\x^2=\frac20015=\frac403\\\\y^2=89-4\cdot \frac403=\frac89\cdot 3-1603=\frac1073\\\\
AC=2y,BC=2x
Из треуг.АВС:
AB^2=AC^2+BC^2=4y^2+4x^2=4(y^2+x^2)=\\\\=4(\frac1073+\frac403)=\frac4\cdot 1473=196\\\\AB=\sqrt196=14


, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт