В параллелограмме abcd биссектрисы углов b и c пересекаются в точке

В параллелограмме abcd биссектрисы углов b и c пересекаются в точке L, лежащей на стороне AD. Найдите периметр параллелограмма ABCD, если знаменито,что CL=12, а площадь треугольника ABL=15.

Задать свой вопрос
1 ответ

Параллелограмм АВСД, ВЛ и СЛ биссектрисы, СЛ=15, угол АЛВ=уголЛВС как внутренние многосторонние=уголАВЛ, треугольникАВЛ равнобедренный, АВ=АЛ, уголСЛД=уголЛСВ как внутренние многосторонние=уголЛСД, треугольникЛСД равнобедренный, СД=ЛД, но АВ=СД, означает АЛ=ЛД=АВ=СД, проводим вышины ВК на АЛ и СН на продолжение ЛД, ВК=СН = высота параллелограмма, площадь АВЛ=1/2*АЛ*ВК=15, площадь ЛСД=1/2*ЛД*СН, но АЛ=ЛД, а СН=ВК, означает площади треугольников одинаковы =15, проводим вышину ДО в треугольнике ЛСД на СЛ, ДО=2*площадь/СЛ=2*15/12=2,5, треугольник ЛСД равнобедренный, ОД=вышина, медиана, биссектриса, ЛО=ОС=12/2=6, ЛД=корень(ЛО в квадрате+ДО в квадрате)=корень(36+6,25)=6,5 =СД=АВ, АД=2*ЛД=2*6,5=13
Kamilla
Спасибо громадное!!!
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт