Радиус окружности с центром в точке О равен 85, длина хорды

Радиус окружности с центром в точке О равен 85, длина хорды АВ одинакова 102.Найдите расстояние от хорды, до параллельной ей касательной К.
Касательная проведена на верху.

Задать свой вопрос
1 ответ
Проведем отрезок OB как показано на рисунке.Расстояние от хорды AB до параллельной ей касательной k обозначено как CD.CD=OC+OD, OC - это радиус окружности, найдем OD.По условию задачи kAB. CD перпендикулярен k (по свойству касательной), тогда CD перпендикулярен и AB (т.к. CD - секущая для параллельных прямых, и внутренние накрест-лежащие углы равны), означает треугольник OBD прямоугольный.
DB=AB/2=102/2=51 (по второму свойству хорды)
OB равен радиусу окружности.
Тогда по теореме Пифагора:
OB(в квадрате)=OD(в квадрате)+DB(в квадрате)
85(в квадрате)=OD(в квадрате)+51(в квадрате)
7225=OD(в квадрате)+2601
OD(в квадрате)=7225-2601=4624
OD=68CD=OC+OD=85+68=153
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт