Помогите решить, пожалуйста. Стороны оснований правильной треугольной усеченной пирамиды

Помогите решить, пожалуйста. Стороны оснований правильной треугольной усеченной пирамиды равны 4 дм и 1 дм, боковое ребро 2 дм. Вычислите объем пирамиды.

Задать свой вопрос
1 ответ
V=1/3h(S1+sqrt(S1*S2)+S2)
S1=4^2*sqrt(3)/4=4sqrt(3).
S2=1*sqrt(3)/4=sqrt(3)/4.
Радиус описанной окружности равен стороне деленной на корень из 3.
R=a/sqrt(3).
R1=4*sqrt(3)/3.
R2=sqrt(3)/3.
Тогда образуем прямоугольную трапецию основания которой будут одинаковы радиусам обрисованных окружностей. Проведем вышину, с подмогою которой образуем прямоугольный треугольник. Гипотенуза равна 2, а катет равен разности радиусов, т.е. sqrt(3). По т. Пифагора H=sqrt(4-3)=1.
Подставляем все в формулу:1/3*1(4 sqrt(3)+ sqrt(3)+sqrt(3)/4)=7 sqrt(3)/4.
Ответ:V=7sqrt(3)/4 (дм^3)
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт