в остроугольном треугольнике АВС серединные перпендикуляры сторон АВ и АС пересекаются

В остроугольном треугольнике АВС серединные перпендикуляры сторон АВ и АС пересекаются в точке О и ОА=8 см. найдите площадь треугольника ОВС, если угол ОВС= 60градусов. решите пожалуйста, безотлагательно надобно!

Задать свой вопрос
Инжинова Нелли
спасибо Для вас за поддержку
2 ответа
Серединные перпендикуляры пересекаются в центре описанной окружности
это значит, что АО=ВО=СО=8см
треугольник ОВС - равносторонний со стороной 8 см
его площадь 8*8*sin(pi/3)*1/2=16*корень(3)
Решаю, но мне что-то не нравится. точка О - центр описанной окружности, которая находится на скрещении серединных перпендикуляров, ОА=ОВ=ОС=8, треугольник ОВС, угол ОВС=60, треугольник равнобедренный, уголОВС=уголОСВ=60, уголВОС=180-60-60=60, треугольник ОВС равносторонний, ОВ=ОС=ВС, площадьОВС=сторона в квадрате*корень3/4=8*8*корень3/4=16*корень3
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт