даны координатты вершин треугольника АВС: А (2;1) , В (-1;4) ,
Даны координатты вершин треугольника АВС: А (2;1) , В (-1;4) , С (3;-2 ) найдите 1) уравнения сторон А АС ВС; 2) уравнения прямых проходящих через вышины АH 1 AH2 AH3; 3) углы треугольника 4) длины высот
Задать свой вопросУравнение прямой, проходящей через две точки (x1;y1) (x2;y2)^
(x-x1)\(x2-x1)=(y-y1)\(y2-y1)
(x-x1)\(x2-x1)*(y2-y1)+y1=y (если x1 не одинаково x2, y2 не одинаково y1)
Уравнение прямой AB
y=(x-2)\(-1-2)*(4-1)+1=2-x+1=-x+3
угловой коэфициент равен -1
Уравнение прямой AC
y=(x-2)\(3-2)*(-2-1)+1=6-3x+1=-3x+7
угловой коэфициент равен -3
Уравнение прямой BC
y=(x+1)\(3+1)*(-2-4)+4=-3\2x-3\2+4=-3\2x+5\2
угловой коэфициент равен -3\2
у перпендикулярных прямых произведение угловых коэфициентов равно -1
потому
угловой коээфициент вышины AH1, равен -1\(-3\2)=2\3
угловой коээфициент высоты BH2, равен -1\(-3)=1\3
угловой коээфициент высоты CH3, равен -1\(-1)=1
Уравнение прямой имеет вид y=kx+b
Разыскиваем уравнение прямой, проходящей через высоту AH1, (она проходит через точку А)
1=2\3*2+b, b=-1\3
y=2\3x+1\3
Отыскиваем уравнение прямой, проходящей через высоту BH2, (она проходит через точку B)
4=1\3*(-1)+b, b=13\3
y=1\3x+13\3
Разыскиваем уравнение прямой, проходящей через высоту CH3, (она проходит через точку C)
-2=1*3+b, b=-5
y=x-5
Ответ: уравнения прямых, проходящих через вышины AH1, BH2, CH3 соотвественно y=2\3x+1\3 ,y=1\3x+13\3 , y=x-5 ну вот
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.