Дан квадрат АВСD точки M N P Q являются серединами его

Дан квадрат АВСD точки M N P Q являются серединами его сторон. Укажите вид четырехугольника M N P Q

Задать свой вопрос
1 ответ
Предположим что точка М середина АВ, N середина BC, P середина DC, а Q середина DA. 
Т.к. точки M, N, P, Q являются серединами треугольник MBN равен треугольникам CNP, DPQ, QAM, по двум граням и углу между ними.(прямому углу), 
в этих треугольниках гипотенузы одинаковы, а значит все стороны у четырехугольника равны MNPQ. 
У треугольников MBN, CNP, DPQ, QAM  углы при основаниях одинаковы по 45 градусов.
Потому углы у MNPQ одинаковы 90 градусов.
Четырехугольник MNPQ является квадратом
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт