Равнобедренный треугольник АВС вписан в окружность. Поперечник CD пересекает сторону AB
Равнобедренный треугольник АВС вписан в окружность. Поперечник CD пересекает сторону AB в точке М такой, что ВМ=kМА. Найдите отношение DM:MC.
Задать свой вопрос1 ответ
Хавис
Руслан
В треугольнике АВС:
BC=AB=BM+MA=k*MA+MA=MA(k+1) (дано).
В треугольнике МВС имеем: MB/BC=MO/OC (так как ВО - биссектриса lt;ABC).
Либо k*MA/MA(k+1)=MO/OC, либо MO/OC=k/k+1. Отсюда MO=k*R/(k+1), так как ОС=R.
DM=R-MO=R-k*R/(k+1)=[R(k+1)-kR]/(k+1)=R(k+1-k)/(k+1)=R/(k+1).
MC=R+MO=R+k*R/(k+1)=[R(k+1)+kR]/(k+1)=R(k+1+k)/(k+1)=R(2k+1)/(k+1).
Тогда DM/MC=(R/(k+1))/(R(2k+1)/(k+1))=1/2k+1.
Ответ: DM:MC=1/(2k+1).
BC=AB=BM+MA=k*MA+MA=MA(k+1) (дано).
В треугольнике МВС имеем: MB/BC=MO/OC (так как ВО - биссектриса lt;ABC).
Либо k*MA/MA(k+1)=MO/OC, либо MO/OC=k/k+1. Отсюда MO=k*R/(k+1), так как ОС=R.
DM=R-MO=R-k*R/(k+1)=[R(k+1)-kR]/(k+1)=R(k+1-k)/(k+1)=R/(k+1).
MC=R+MO=R+k*R/(k+1)=[R(k+1)+kR]/(k+1)=R(k+1+k)/(k+1)=R(2k+1)/(k+1).
Тогда DM/MC=(R/(k+1))/(R(2k+1)/(k+1))=1/2k+1.
Ответ: DM:MC=1/(2k+1).
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
Игорь 14 лет назад был на 8 лет моложе, чем его
Математика.
Два тела массами m1 и m2 находящие на расстоянии R друг
Физика.
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
Облако тегов