Гипотенуза Прямоугольного треугольника одинакова 17 см а радиус вписанной окружности этого

Гипотенуза Прямоугольного треугольника одинакова 17 см а радиус вписанной окружности этого треугольника равен трём найдите периметр этого треугольника

Задать свой вопрос
2 ответа
Воспользуемся формулой радиуса окружности, вписанной в прямоугольный тр-к: r=(a+b-c)/2; 2r=a+b-c. Прибавим к обеим долям равенства 2с: 2r+2c=a+b+c; P=2r+2c=2*3+2*17=40(cм).
Пусть у нас будет треугольник ABC с гипотенузой BC, O - центр вписанной окружности. Проведем радиусы OM и ON к боковым граням AB и AC соответственно. Получим четырехугольник с одинаковыми смежными сторонами, т.е. - это квадрат. Отрезки касательных равны, т.е. AN=AM=3 см; CN=CF=х см; BM=BF=y. Длина гипотенузы = x+y=17 см. Означает, х=17-y
Длины сторон можно связать по аксиоме Пифагора:
AB^2+AC^2=BC^2
(17+3-x)^2+(x+3)^2=17^2
400-40y+x^2+x^2+6y+9=289
2y^2-34x+120=0
y^2-17x+60=0
По аксиоме Виета найдем корни этого квадратного уравнения:
x1+x2=17
x1*x2=60
x1=12; x2=5 - это и есть длины обоих неведомых касательных, т.к. числа эти взаимозаменяемы.
Т.е. дины катетов = 3+12=15 (см) - 1-ый; 3+5=8 (см) - второй, как следует, P = 17+15+8=40 (см)
Ответ: 40 см.
Milena
А откуда взялся "y"?
Колян Зилддинов
Отрезок касательной же
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт