Внутри параллелограмма ABCD избрали произвольную точку Е. Обоснуйте, что сумма площадей

Снутри параллелограмма ABCD избрали произвольную точку Е. Обоснуйте, что сумма площадей треугольников BEC и AED одинакова половине площади параллелограмма.

Задать свой вопрос
1 ответ
Построим вышину НН1, проходящую через точку Е. Найдем площадь треугольника ВЕС (обозначим ее за S1):
S1=1/2BC*EH (отрезок ЕН будет являться вышиной треуг-ка ВЕС).
Найдем площадь треугольника AED (обозначим ее за S2):
S2=1/2AD*EH1 (отрезок ЕН1 - вышина треуг-ка АЕD).
S1+S2=1/2BC*EH+1/2AD*EH1=1/2(BC*EH+AD*EH1). Беря во внимание, что в параллелограмме ВС=AD, можно записать:
S1+S2=1/2(AD*EH+AD*EH1)=1/2AD(EH+EH1).
Площадь параллелограмма S равна:
S=AD*HH1.
НН1=ЕН+ЕН1. Тогда
S1+S2=1/2AD*HH1. Таким образом
S1+S2=1/2S
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт