Радиус окружности с центром в точке O равен 10, длина хорды

Радиус окружности с центром в точке O равен 10, длина хорды AB равна 12. Найдите расстояние от хорды AB до параллельной ей касательной K .

Задать свой вопрос
1 ответ
Т.к. хорда параллельна касательной, то хорда и радиус, пересекающиеся в точке Н, перпендикулярны. Проведём из точки О в А и В радиусы. Т.к. радиусы, понятно дело, одинаковы, то треугольник АОВ равнобедренный. Т.к хорда перпендикулярна радиусу, треугольник равнобедренный, то ВН = НА. Хорда 12, радиус 10, то по аксиоме Пифагора ОВ^2 = ОН^2 + НВ^2; 100 = ОН^2 + 36; ОН^2 = 100 - 36; ОН = 64; ОН=8. Т.к расстояние от центра окружности до касательной равно радиусу, расстояние от центра до хорды 8, то расстояние от хорды до касательной одинаково 10+8= 18
Egor Buhanovich
Ваш ответ ошибочный
Стефания Лыкошина
Ответов обязано быть два 2 см. либо 18 см.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт