Надо отыскать уравнение плоскости который проходит точками М [tex]М_1[/tex] (1;2;3),М
Надо отыскать уравнение плоскости который проходит точками М (1;2;3),М (-1;2;1) и М (3;-1;1)
Задать свой вопросПусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) координаты первой, 2-ой и третьей точки соответственно. Тогда уравнение плоскости, проходящей через эти точки определяется из выражения:
(x-x1)*(у2-y1)*(z3-z1) (x-x1)*(z2-z1)*(y3-y1) (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) (z-z1)*(y2-y1)*(x3-x1) = 0.
Подставив координаты точек в это выражение, получаем уравнение плоскости через точки МММ: 3x +4y - 3z - 2 = 0.
Это же уравнение можно получить через определитель:
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xB - xA yB - yA zB - zA
xC - xA yC - yA zC - zA = 0
Подставим данные и упростим выражение:
x - 1 y - 2 z - 3
(-1) - 1 2 - 2 1 - 3
3 - 1 (-1) - 2 1 - 3 = 0
x - 1 y - 2 z - 3
-2 0 -2
2 -3 -2 = 0
(x - 1) 0(-2)-(-2)(-3) - (y - 2) (-2)(-2)-(-2)2 + (z - 3) (-2)(-3)-02 = 0
(-6) x - 1 + (-8) y - 2 + 6 z - 3 = 0
- 6x - 8y + 6z + 4 = 0
3x + 4y - 3z - 2 = 0.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.