Боковая сторона равнобедренного треугольника в два раза больше основания и на
Боковая сторона равнобедренного треугольника в два раза больше основания и на 12 см меньше периметра треугольника. Найдите основание треугольника
Задать свой вопросПускай основание треугольника - это х, тогда его боковая сторона - это 2х. Составим и решим уравнение. При этом учтем, что боковые стороны схожи, а периметр - это сумма всех сторон.
х + 2х + 2х = х + 12;
5х - х = 12;
4х = 12;
х = 12 : 4;
х = 3 (основание треугольника).
3 2 = 6 (боковая сторона треугольника).
Ответ: 3 см основание, 6 см боковая сторона.
Какой треугольник называется равнобедренным
Равнобедренный треугольник - это таковой треугольник, у которого одна сторона величается "основание", а две иные стороны равны между собой и величаются "боковыми".
Равнобедренный треугольник владеет рядом параметров, которые нужно держать в голове:
- Углы при основании равнобедренного треугольника одинаковы меж собой.
- В равнобедренном треугольнике биссектриса, которую провели к основанию, будет являться также медианой и вышиной.
- Оборотное утверждение тоже правосудно: в равнобедренном треугольнике вышина, проведенная к основанию, является медианой и биссектрисой.
Разыскиваем основание треугольника
На базе условия задачки и вышеуказанных параметров равнобедренного треугольника, введём в задачку переменную x (см) - основание треугольника, тогда (2 * x) см - любая боковая сторона треугольника. Периметр треугольника (P) - это сумма всех его сторон. По условию у нас (2 * x) = (P - 12), как следует, P = (2 * x + 12) см. Значит:
P = 2 * x + 2 * x + x (периметр - это сумма всех сторон);
P = 5 * x, где P = (2 * x + 12);
2 * x + 12 = 5 * x;
-3 * x = -12;
x = 4 (см) - разыскиваемое основание треугольника.
Ответ: основание треугольника одинаково 4 см.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.