Высоты AT и BD треугольника ABC пересекаются в точке O. Знаменито

Вышины AT и BD треугольника ABC пересекаются в точке O. Известно ,что OT=2см, OD=3см, уголOAD=30.Вычислите площадь треугольника ABC.

Задать свой вопрос
1 ответ

Для решения рассмотрим набросок (https://bit.ly/2C1qzj8).

Осмотрим прямоугольный треугольник АДО, у которого, по условию, угол ДАО равен 300, тогда катет ОД лежит против этого угла и равен половине длины гипотенузы АО. ОД = АО / 2. АО = 2 * ОД = 2 * 3 = 6 см.

Рассмотрим два треугольника, АДО и ВТО. Оба треугольника прямоугольные с прямыми углами Д и Т. Угол АОД = ВОТ как вертикальные  углы при скрещении прямых АТ и ВД.

Тогда:

ОД / ОТ = АО / ВО.

3 / 2 = 6 / ВО.

ВО = 2 * 6 / 3 = 4 см.

Тогда высота ВД = ВО + ДО = 4 + 3 = 7 см.

Определим площадь треугольника АВС.

Из прямоугольного треугольника АТС определим гипотенузу АС.

CosТАС = АТ / АС.

АС = АТ / Cos300 = (AO + OT) /  Cos300 = 8 / (3 / 2) = 16 / 3 см.

S = АС * ВД / 2 = (16 / 3) * 7 / 2 = 56 / 3 см2.

Ответ: Площадь треугольника одинакова 56 / 3 см2.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт