АВ-поперечник окружности с центром О, М-точка этой окружности.Найдите периметр треугольника МОВ,если

АВ-диаметр окружности с центром О, М-точка этой окружности.Найдите периметр треугольника МОВ,если знаменито, что АВ=13, АМ=12.

Задать свой вопрос
1 ответ

Для решения рассмотрим набросок (https://bit.ly/2L17YVd).

Если у вписанного в окружность треугольника одна из сторон равна поперечнику окружности, то этот треугольник прямоугольный, а поперечник есть гипотенуза этого треугольника.

Определим длину катета АМ прямоугольного треугольника АМВ.

По аксиоме Пифагора АВ2 = ВМ2 + АМ2.

ВМ2 = АВ2 АМ2 = 169 144 = 25.

ВМ = 5 см.

Отрезки ОМ и ОВ являются радиусами окружности, и соответственно одинаковы между собой.

АВ поперечник окружности, тогда ОМ = ОВ = АВ / 2 = 13 / 2 = 6,5 м.

Тогда Рмов = ОВ + ОМ + МВ = 6,5 + 6,5 + 5 = 18 см.

Ответ: Рмов = 18 см.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт