В правильно четырехугольной пирамиде вышина одинакова 12, объем равен 200. Найти
В верно четырехугольной пирамиде вышина одинакова 12, объем равен 200. Отыскать боковое ребро этой пирамиды.
Задать свой вопросДля решения рассмотрим набросок (https://bit.ly/2GPuIZJ).
По формуле объема пирамиды определим площадь ее основания.
V = Sосн * КО / 3.
Sосн = 3 * V / КО = 3 * 200 / 12 = 50 см2.
Определим сторону квадрата в основании пирамиды.
Sосн = АД2.
АД = Sосн = 50 = 5 * 2 см.
Проведем диагональ ВД квадрата и определим ее длину по аксиоме Пифагора.
ВД2 = АД2 + АВ2 = 2 * (5 * 2)2 = 100.
ВД = 10 см.
Диагонали квадрата, в точке скрещения делятся напополам, тогда ДО = ВД / 2 = 10 / 2 = 5 см.
В прямоугольном треугольнике КОД, КД2 = КО2 + ДО2 = 144 + 25 = 169.
КД = 13 см.
Ответ: Длина бокового ребра одинакова 13 см.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.