Угол при наименьшем основании трапеции равен 120, три стороны одинаковы 6
Угол при наименьшем основании трапеции равен 120, три стороны равны 6 см. Найдите среднюю линию трапеции
Задать свой вопросДля решения осмотрим набросок (https://bit.ly/2THxBzT).
Проведем из верхушки В вышину ВН, тогда в прямоугольном треугольнике АВН угол АВН = АВС НВС = 120 90 = 300. Катет АН лежит против угла 300, а следовательно, равен половине длины гипотенузы АВ.
АН = АВ / 2 = 6 / 2 = 3 см.
В равнобедренной трапеции высота, проведенная к большему основанию, разделяет его на два отрезка, наименьший из которых равен полуразности оснований.
АН = (АД - ВС) / 2.
3 = (АД - 6) / 2.
АД = 12 см.
Определим среднюю линию трапеции.
КР = (ВС + АД) / 2 = (6 + 12) / 2 = 18 / 2 = 9 см.
Ответ: Длина средней полосы одинакова 9 см.
-
Вопросы ответы
Статьи
Информатика
Статьи
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.
Математика.
Химия.