В основании прямой призмы лежит равнобедренный прямоугольный треугольник с катетом 13.
В основании прямой призмы лежит равнобедренный прямоугольный треугольник с катетом 13. Боковое ребро одинаково 6. Найдите площадь боковой поверхности.
Задать свой вопросДля решения осмотрим рисунок (https://bit.ly/2UvP8hH).
В основании пирамиды лежит равнобедренный, прямоугольный треугольник, в котором по теореме Пифагора, определим длину гипотенузы АВ.
АВ2 = АС2 + ВС2 = 169 + 169 = 338.
АС = 13 * 2 см.
Определим периметр треугольника АВС.
Равс = (АВ + ВС + АС) = 13 * 2 + 13 + 13 = 26 + 13 * 2 = 13 * (2 + 2) см.
Так как призма прямая, то ее боковые грани прямоугольники, тогда Sбок = Равс * АА1 = 13 * (2 + 2) * 6 = 78 * (2 + 2) см2.
Ответ: Площадь боковой поверхности одинакова 78 * (2 + 2) см2.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.