Знайдть площу ромба, сторона дорвейвню 4 см, кут дорвейвню 120

Знайдть площу ромба, сторона дорвню 4 см, кут дорвейвню 120

Задать свой вопрос
2 ответа
Дано:
a = 4 см
\alpha = 120

Найти:
S=?

Решение:
Площадь ромба может быть определена по формуле
S = a^2 \sin\beta,
где \beta - это острый угол меж гранями ромба. В нашем случае, 
\beta = 180^\texto - \alpha = 180^\texto - 120^\texto = 60^\texto 

Вычислим площадь ромба:
S = 4^2 \sin60^\texto = 16\cdot \left( \dfrac\sqrt32 \right) = 8 \sqrt3 см.

Ответ: 83 см.
Любовь
Площадь ромба одинакова S = a*Sin , а не Sin
Площадь ромба одинакова произведению квадрата стороны на синус угла между сторонами.
Если тупой угол ромба равен 120 , то острый угол равен
180 - 120 = 60
Пусть a - сторона ромба, тогда:
S = a ^2 *Sin60 ^o=4 ^2* \frac \sqrt3 2 =16* \frac \sqrt3 2=8 \sqrt3

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт