Все стороны четырехугольника ABCD разны по длине. Медианы треугольника ABC пересекаются
Все стороны четырехугольника ABCD различны по длине. Медианы треугольника ABC пересекаются в точке M, а N - середина отрезка, соединяющего середины сторон AB и CD. Какие значения может принимать отношение DM : DN ?
Задать свой вопросВоспользуемся способом координат.
Поставим центр СК в точку D и направим ось X по DC, а ось Y по DA.
Система координат не является прямоугольной декартовой.
Обозначим AB=a, BC =b , CD = c , AD =d.
Имеем координаты точек:
D (0;0) A (0;d) C (c;0) , а координаты точки B мы не знаем. Обозначим их как b*x и b*y, где b - длина отрезка BC.
Имеем дальше координаты точки Q (0;d/2) - середина DA и P ((c+b*x)/2;b*y/2) - середина BC.
Середина отрезка PQ - точка N по условию.
Её координаты N ((c+b*x)/4; (d+b*y)/4)
Далее обретаем координаты точки G - середина отрезка AC.
В этой точке медиана, выходящая из верхушки B, пересекает сторону AC.
G (c/2;d/2)
Знаменито, что точка пересечения медиан разделяет их в отношении 2:1.
Тогда координаты точки М одинаковы
М = G+(B-G)/3 = ((b*x+c)/3;(b*y+d)/3)
откуда DM=L/3 , DN = L/4, где L=bx+c, by+d
-
Вопросы ответы
Статьи
Информатика
Статьи
Физика.
Геометрия.
Разные вопросы.
Обществознание.
Математика.
Химия.
Русский язык.
Разные вопросы.
Разные вопросы.
Математика.