Прямоугольный треугольник с катетами a и b описан около окружности радиуса

Прямоугольный треугольник с катетами a и b описан около окружности радиуса r и вписан в окружность радиуса R. Обоснуйте, что 2R+2r = a+b.

Задать свой вопрос
1 ответ
Пусть АВ=а, АС=b, BC=2R
Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы.
Центр вписанной окружности лежит на скрещении биссектрис.
OC и ОВ- биссектрисы
Докажем что треугольник OFC=OEC.
угол OFC=OEC=90
угол OCF=OCE, тк ОС-биссектриса
=gt;угол FOC=EOC
OC-общая
Из подтверждения следует что FC=EC=b-r
Аналогично доказываем что треугольник BOD=BOE и что DB=BE=a-r
BC=2R=BE+EC=(b-r)+(a-r)=b+a-2r
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт