Прямые AB и AC-касательные к окружности с центром в точке O(B

Прямые AB и AC-касательные к окружности с центром в точке O(B и C-точки касания).Выбирается случайная точка X дуги BC.Через X проведена касательная,пересекающая отрезки AB и AC в точках M и N.
Доказать,что периметр треугольника AMN не зависит от выбора точки X

Задать свой вопрос
1 ответ

Касательные, проведенные к окружности из одной точки одинаковы (по общей гипотенузе и равным катетам).

MX=MB как касательный к окружности, проведенный из точки M. NX=NC, как касательные проведенные к окружности из точки N.


Pamn = AM + MN + AN = AM + MX + NX + AN = AM + MB + AN + NC = AB + AC и не зависит от выбора точки X

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт