Для геометрических рядов a+ar+ar квадрат +... . Сумма первых 2-ух членов

Для геометрических рядов a+ar+ar квадрат +... . Сумма первых 2-ух членов равна 24 а сумма до бесконечности равна 27 . Покажи это r=+-1/3

Задать свой вопрос
1 ответ
A + ar = 24a + ar + ar^2 + ar^3 + .. = (a + ar) + (a + ar) r^2 + (a + ar) r^4 + ... = 24 (1 + r^2 + r^4 + ...)
Сумма геометрической прогрессии в скобках равна 1 / (1 - r^2)
24 / (1 - r^2) = 271 - r^2 = 24 / 27 = 8/9r^2 = 1/9r = +- 1/3
(Для любителей правдивости: расставлять скобки можно, так как геометрическая прогрессия - безусловно сходящийся ряд. Легко придумать пример, когда скобки расставлять нельзя: к примеру 1 - 1 + 1 - 1 + ... не имеет суммы, (1 - 1) + (1 - 1) + ... = 0, а из равенства 1 - 1 + 1 - 1 + .. = 1 - (1 - 1 + 1 - 1 + ...) можно "получить", что 1 - 1 + 1 - 1 + ... = 1/2)
Aljona Vantjaeva
Спасибо
Фуряева Мария
Нез
Есения Кибина
Эй ты может мне формулу выслать ??
Никита Ретюнский
Извини. Не могу
Костя Сивокобыльский
Пренебрегал
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт